ClpP Mediates Activation of a Mitochondrial Unfolded Protein Response in C. elegans

Cole M. Haynes,1 Kseniya Petrova,1,2 Cristina Benedetti,1,2 Yun Yang,1 and David Ron1,*

1Kimmel Center for Biology and Medicine of the Skirball Institute and the Departments of Cell Biology and Medicine, New York University School of Medicine, New York, NY 10016, USA
2These authors contributed equally to this work.
*Correspondence: ron@saturn.med.nyu.edu
DOI 10.1016/j.devcel.2007.07.016

SUMMARY

The cellular response to unfolded and misfolded proteins in the mitochondrial matrix is poorly understood. Here, we report on a genome-wide RNAi-based screen for genes that signal the mitochondrial unfolded protein response (UPRmt) in C. elegans. Unfolded protein stress in the mitochondria correlates with complex formation between a homeodomain-containing transcription factor DVE-1 and the small ubiquitin-like protein UBL-5, both of which are encoded by genes required for signaling the UPRmt. Activation of the UPRmt correlates temporally and spatially with nuclear redistribution of DVE-1 and with its enhanced binding to the promoters of mitochondrial chaperone genes. These events and the downstream UPRmt are attenuated in animals with reduced activity of clpp-1, which encodes a mitochondrial matrix protease homologous to bacterial ClpP. As ClpP is known to function in the bacterial heat-shock response, our findings suggest that eukaryotes utilize component(s) from the protomitochondrial symbiont to signal the UPRmt.

INTRODUCTION

The essential processes of protein folding, complex assembly, and degradation are compartmentalized in eukaryotic cells. Chaperones and proteases are selectively targeted to the cytosol, endoplasmic reticulum, and mitochondria, where they service unfolded and misfolded proteins in each compartment (Hartl and Hayer-Hartl, 2002; Bukau et al., 2006). Signal transduction pathways selectively couple perturbation in the protein-folding environment in a given organelle to the activation of genes that enhance the capacity for protein handling by that organelle. These pathways have come to be known as unfolded protein responses (UPRs), and their importance to cellular and organismal homeostasis has been well documented (reviewed in Barral et al., 2004; Ron and Walter, 2007).

First to be identified was a cytosolic pathway, known as the heat-shock response (Lindquist, 1986), followed by the discovery of a similar pathway in the endoplasmic reticulum (ER), the UPRer (Gething and Sambrook, 1992). In both compartments, signaling is initiated by a shift in equilibrium between unfolded proteins and their chaperones and is terminated by restoration of that equilibrium. Components that function in the cytoplasmic and ER UPRs have been identified, but the regulatory links between the folding environment in the mitochondrial matrix and the nuclear genes that encode mitochondrial chaperones have remained poorly understood.

The mitochondrial proteome is constituted from a small number of highly expressed mitochondrial genes and a large number of nuclear genes whose products are imported into the organelle from their site of synthesis, the cytosol (Hartl and Neupert, 1990). A small number of nuclear-encoded general chaperones, exemplified by Hsp70/DnaK homologs and Hsp60-Hsp10/GroE homologs, assist in import, folding, and solubilization of many different unfolded substrates (Neupert, 1997; Voos and Rottgers, 2002). Specialized chaperones and proteases assist in assembly of specific complexes, for example mitochondrial ribosomes (Nolden et al., 2005) and respiratory chain components (Nijtimans et al., 2000). The protein-folding environment in the mitochondria can be perturbed by malfunction of any of the above components, but also by the expression of a misfolding-prone matrix protein (Zhao et al., 2002) and even by global compromise in expression of the mitochondrial genome (the rho− state), which leads to accumulation of unassembled imported subunits (Martinus et al., 1996). Such perturbations selectively induce nuclear genes encoding general mitochondrial matrix chaperones (Hsp70 and Hsp60) and suggest the existence of a mitochondrial unfolded protein response (UPRmt) (Zhao et al., 2002).

We have developed C. elegans strains that report on the activity of the UPRmt with integrated green fluorescent protein (GFP) genes driven by the regulatory portions of mitochondrial Hsp60 and Hsp70 genes (hsp-60r::gfp and hsp-60m::gfp) and confirmed the selectivity of these reporters to mitochondrial unfolded protein stress
(Yoneda et al., 2004). These reporter strains were then applied to a systematic search for genes involved in signaling the UPRmt. A pilot screen of 2,445 genes on C. elegans chromosome I validated the methodology and led to the identification of one gene, \textit{ubi-5}, implicated in a downstream nuclear event in the UPRmt (Benedetti et al., 2006). Having completed a genome-wide screen for genes that signal the UPRmt, we report here on the identification of a pathway extending from the mitochondrial matrix to the nucleus. Interestingly, our observations are consistent with functional conservation of an upstream component of the bacterial heat-shock response in the UPRmt.

RESULTS

A Genome-Wide Screen for Genes Involved in the UPRmt

To identify genes whose inactivation impedes the UPRmt, we made use of a previously characterized worm strain bearing a temperature-sensitive mutation, \textit{zc32} II, that causes mitochondrial unfolded protein stress and activates the UPRmt at the nonpermissive temperature (Benedetti et al., 2006). Mutant \textit{zc32} worms were fed bacteria from clones individually expressing RNAi constructs directed to 16,757 known \textit{C. elegans} homology with the product of \textit{D. melanogaster dve} (defec- tive proventriculus, Nakagoshi et al., 1998) and mamma- lian SatB2 (Dobreva et al., 2003) and will be referred to henceforth as \textit{dve-1}. Knockout of \textit{dve-1} is lethal (see below), but partial inactivation by \textit{dve-1} (RNAi) inhibited \textit{hsp-60}\textsubscript{pr}::gfp expression in \textit{zc32} mutant adults at the nonpermissive temperature. Inhibition was observed using RNAi clones that target the transcribed genomic region (Figure 1A) or the 3' UTR (Figure S1). \textit{dve-1} (RNAi) also interfered with \textit{hsp-60}\textsubscript{pr}::gfp expression in animals exposed to other conditions that cause mitochondrial unfolded protein stress, such as culture on plates containing ethidium bromide, which leads to imbalanced synthesis of nuclear and mitochondrial encoded proteins and \textit{spg-7} (RNAi), which blocks an essential mitochondrial protease (Yoneda et al., 2004; Nolden et al., 2005; Figure 1B). Specificity for the UPRmt is revealed by the observation that \textit{dve-1} (RNAi) did not affect the upregulation of a UPRer reporter (\textit{hsp-4}\textsubscript{pr}::gfp) by tunicamycin (Figure 1A). Inhibition of the UPRmt reporters was mirrored by the effects of \textit{dve-1} (RNAi) on the expression of the endogenous mitochondrial chaperone genes, \textit{hsp-60} and \textit{hsp-6} (Figure 1C).

\textbf{DVE-1 Is Required for Embryonic Development and Maintenance of Mitochondrial Morphology}

Immunostaining of embryos with antiserum raised to bacterial expressing DVE-1 revealed a signal that colocalized with the DNA-binding dye Hoechst H33258 (Figure 2A), indicating nuclear localization of the endogenous protein. Most cells had some DVE-1 staining, but the strongest signal was observed in the mitochondria-rich intestinal precursor cells. The validity of the anti-DVE-1 staining is supported by the diminished signal in embryos born to \textit{dve-1} (RNAi) mothers and by its concordance with the fluorescent signal in embryos expressing a \textit{dve-1}\textsubscript{pr}::gfp transgene controlled by the endogenous promoter (\textit{dve-1}\textsubscript{pr}::dve-1\textsubscript{::gfp}) (Figure 2A). The \textit{dve-1}\textsubscript{pr}::dve-1\textsubscript{::gfp} transgene is at least partially functional, as it is able to rescue \textit{dve-1} knockdown by RNAi directed to the gene's 3' UTR (Figure S1), but it is unable to rescue the lethality associated with a null mutation (data not shown).

Heterozygous animals with a deletion allele in \textit{dve-1} (tm259)X were obtained from the National Bioresource Project for \textit{C. elegans} (Tokyo). The 984 base pair deletion includes exons seven and eight, which encode the predicted DNA-binding domain of DVE-1 and therefore severely disrupts gene function. Homozygous \textit{dve-1} (tm259)X mutant animals develop normally until ~330 min postfertilization, after which they arrest and degenerate (Figure 2B). Though morphologically normal at this early stage of development, homzygous \textit{dve-1} (tm259)X mutant embryos born to \textit{spg-7} (RNAi) mothers have attenuated \textit{hsp-60}\textsubscript{pr}::gfp expression, whereas wild-type embryos from \textit{spg-7} (RNAi) mothers express higher levels of \textit{hsp-60}\textsubscript{pr}::gfp (Figure 2C). These findings indicate that activation of the UPRmt in early embryos depends on endogenous \textit{dve-1}.

We turned our attention first to \textit{ZK1193.5}, which encodes a predicted 468 amino acid protein that shares homology with the product of \textit{D. melanogaster dve} (defective proventriculus, Nakagoshi et al., 1998) and mammalian SatB2 (Dobreva et al., 2003) and will be referred to henceforth as \textit{dve-1}. Knockout of \textit{dve-1} is lethal (see below), but partial inactivation by \textit{dve-1} (RNAi) inhibited \textit{hsp-60}\textsubscript{pr}::gfp expression in \textit{zc32} mutant adults at the nonpermissive temperature. Inhibition was observed using RNAi clones that target the transcribed genomic region (Figure 1A) or the 3' UTR (Figure S1). \textit{dve-1} (RNAi) also interfered with \textit{hsp-60}\textsubscript{pr}::gfp expression in animals exposed to other conditions that cause mitochondrial unfolded protein stress, such as culture on plates containing ethidium bromide, which leads to imbalanced synthesis of nuclear and mitochondrial encoded proteins and \textit{spg-7} (RNAi), which blocks an essential mitochondrial protease (Yoneda et al., 2004; Nolden et al., 2005; Figure 1B). Specificity for the UPRmt is revealed by the observation that \textit{dve-1} (RNAi) did not affect the upregulation of a UPRer reporter (\textit{hsp-4}\textsubscript{pr}::gfp) by tunicamycin (Figure 1A). Inhibition of the UPRmt reporters was mirrored by the effects of \textit{dve-1} (RNAi) on the expression of the endogenous mitochondrial chaperone genes, \textit{hsp-60} and \textit{hsp-6} (Figure 1C).

DVE-1 Is Required for Embryonic Development and Maintenance of Mitochondrial Morphology

Immunostaining of embryos with antiserum raised to bacterial expressing DVE-1 revealed a signal that colocalized with the DNA-binding dye Hoechst H33258 (Figure 2A), indicating nuclear localization of the endogenous protein. Most cells had some DVE-1 staining, but the strongest signal was observed in the mitochondria-rich intestinal precursor cells. The validity of the anti-DVE-1 staining is supported by the diminished signal in embryos born to \textit{dve-1} (RNAi) mothers and by its concordance with the fluorescent signal in embryos expressing a \textit{dve-1}\textsubscript{pr}::gfp transgene controlled by the endogenous promoter (\textit{dve-1}\textsubscript{pr}::dve-1\textsubscript{::gfp}) (Figure 2A). The \textit{dve-1}\textsubscript{pr}::dve-1\textsubscript{::gfp} transgene is at least partially functional, as it is able to rescue \textit{dve-1} knockdown by RNAi directed to the gene’s 3' UTR (Figure S1), but it is unable to rescue the lethality associated with a null mutation (data not shown).

Heterozygous animals with a deletion allele in \textit{dve-1} (tm259)X were obtained from the National Bioresource Project for \textit{C. elegans} (Tokyo). The 984 base pair deletion includes exons seven and eight, which encode the predicted DNA-binding domain of DVE-1 and therefore severely disrupts gene function. Homozygous \textit{dve-1} (tm259)X mutant animals develop normally until ~330 min postfertilization, after which they arrest and degenerate (Figure 2B). Though morphologically normal at this early stage of development, homzygous \textit{dve-1} (tm259)X mutant embryos born to \textit{spg-7} (RNAi) mothers have attenuated \textit{hsp-60}\textsubscript{pr}::gfp expression, whereas wild-type embryos from \textit{spg-7} (RNAi) mothers express higher levels of \textit{hsp-60}\textsubscript{pr}::gfp (Figure 2C). These findings indicate that activation of the UPRmt in early embryos depends on endogenous \textit{dve-1}.
To further examine dve-1's effect on mitochondria, we compared the staining pattern of MitoTracker, a mitochondrial vital dye, in wild-type embryos and early dve-1(tm259)X mutant embryos, following an established protocol (Jagasia et al., 2005). In wild-type embryos, MitoTracker staining was most conspicuous in a reticular network surrounding the large DVE-1-positive nuclei of the intestinal precursor cells, whereas staining in the mutant embryos was consistently diminished by 50% (Figure 2D). As MitoTracker is a vital dye taken up actively by the organelle, these observations are consistent with reduced mitochondrial mass, defective membrane potential, or both. To expand on these observations, we sought a marker for mitochondrial mass. A ligand blot assay with a peroxidase-tagged avidin probe identifies a single major species of ~55 kDa in worm lysates that is enriched in the mitochondrial fraction and probably corresponds to the biotinylated mitochondrial enzyme propionyl-CoA carboxylase (Figure S2; Benedetti et al., 2006). Histochemical analysis of fixed embryos with FITC-conjugated avidin reveals a signal that largely overlaps MitoTracker in dve-1/+ embryos (Figure S2) and is reduced 55% in dve-1(tm259)X mutant embryos (Figure 2E). These observations are consistent with reduced mitochondrial mass, possibly compounded by a functional defect in the mitochondria of the mutant embryos. Unmitigated unfolded protein stress compromises mitochondrial morphology, which is readily visualized in wild-type and dve-1(RNAi) animals (Figure 1A)
the body wall muscle cells of transgenic animals expressing mitochondrially imported GFP (Labrousse et al., 1999). As noted previously, the fine striated pattern of mitochondria in vector (control) RNAi animals was disrupted by induction of mitochondrial unfolded protein stress by spg-7(RNAi) (Benedetti et al., 2006; Figure 2F). A similar perturbation of mitochondrial morphology was also apparent in dve-1(RNAi) animals (Figure 2F). These observations are consistent with a mitochondrial perturbation caused by elevated levels of unfolded protein stress in the dve-1(RNAi) animals with a compromised UPRmt.

A Stress-Induced Alteration of DVE-1’s Nuclear Distribution Correlates with Binding to Mitochondrial Chaperone Genes

Adults transgenic for the dve-1pr::dve-1::gfp reporter normally exhibited bright staining of several head and tail nuclei and a diffuse fluorescence in the intestine. Induction of mitochondrial unfolded protein stress with spg-7(RNAi) resulted in the appearance of bright nuclear GFP puncta in the intestine (Figure 3A). These were not associated with a detectable change in global DVE-1::GFP fusion protein levels (Figure 3B). Due to their thick cuticle, we are unable to reliably immunostain adult animals; however, the tissue distribution of these stress-induced changes in DVE-1::GFP localization mirrored the induction of the UPRmt marker hsp-60pr::gfp (Figure 3C), supporting its physiological relevance. Activity-dependent changes in nuclear localization have also been noted in DVE-1’s mammalian homologs, SATB1 and SATB2 (Cai et al., 2003; Dobreva et al., 2003), but the relationship of those findings to ours remains unknown.

Chromatin immunoprecipitation of DVE-1::GFP complexes with our anti-GFP serum was plagued by high background. Therefore, we created a transgenic line in which DVE-1 is tagged by Myc3-His6. In these dve-1pr::dve-1TAG transgenic animals, the endogenous hsp-60 and hsp-6 promoter fragments were selectively recovered in complex with the tagged protein on Ni⁺ agarose beads (Figure 3D). However, promoter binding was not reproducibly increased by induction of mitochondrial unfolded protein stress (data not shown), suggesting that...
overexpression deregulates aspects of DVE-1 function. We were unable to reliably detect the endogenous mitochondrial chaperone promoters in complex with endogenous DVE-1, even in stressed animals; however, the endogenous protein was immunoprecipitated in a specific complex with the promoter of the hsp-60::gfp transgene (the hsp-60 promoter is likely present at high copy number in the integrated array, increasing signal strength). Importantly, the latter complex was increased by mitochondrial unfolded protein stress in mutant zc32 animals (Figure 3E). These observations correlate activation of the UPRmt with binding of DVE-1 to mitochondrial chaperone genes.

A Complex between UBL-5 and DVE-1 in Stressed Animals

RNAi of the gene encoding the ubiquitin-like protein, UBL-5, blocks the UPRmt (Benedetti et al., 2006; Figure 4A). As a substantial fraction of UBL-5 is found in the nucleus of mitochondrially stressed worms (Benedetti et al., 2006), we hypothesized that it might collaborate with DVE-1 in activating the UPRmt. A transgenic line expressing Myc-His-tagged UBL-5 (TAGUBL-5) and DVE-1::GFP, both under the control of their endogenous promoters, was created. When subjected to mitochondrial stress by spg-7(RNAi), DVE-1::GFP was recovered in complex with TAGUBL-5 (Figure 4B). Complex formation appears to be regulated at the level of UBL-5 expression, whose levels increase in the stressed animals (Benedetti et al., 2006; Figure 4B, input panel), a point to be addressed in more detail below.

Mitochondrial stress was also associated with the formation of a complex between TAGUBL-5 and the endogenous DVE-1 protein (Figure 4C), and in mammalian cells, too, a tagged mammalian homolog of DVE-1 (FLAG-SATB2) formed a complex with GST-tagged mammalian UBL5 (Figure 4D). Only ~1% of the total tagged DVE-1 is recovered in complex with tagged UBL-5 in these coprecipitation experiments, which may attest to the complex’s lability; all the same, these observations suggest a conserved physical interaction between the products of two genes implicated in the C. elegans UPRmt.

A C. elegans ClpP Homolog Required for UPRmt Signaling and DVE-1 Activation

The third gene identified in our screen, ZK970.2, encodes a 221 amino acid protein homologous to the bacterial protease ClpP, which we refer to as clpp-1. Like dve-1(RNAi) and ubl-5(RNAi), clpp-1(RNAi) interferes with hsp-60::gfp induction by mitochondrial stress (Figure 5A). Like dve-1(RNAi) and ubl-5(RNAi), clpp-1(RNAi) also perturbed mitochondrial morphology (Figure 5B), a finding consistent with higher levels of unfolded protein stress in the organelle of animals lacking CLPP-1.

The major difference between CLPP-1 and bacterial ClpP is an N-terminal extension of the C. elegans protein, suggestive of a mitochondrial targeting sequence. Transgenic lines expressing wild-type and N-terminally deleted (ASS), C-terminally tagged CLPP-1 driven by a heat-shock inducible promoter (hsp-16::clpp-1WT::TAG and hsp-16::clpp-1ASS::TAG) were created. The wild-type protein, expressed by the hsp-16::clpp-1WT::TAG transgene, was enriched in the mitochondrial fraction, whereas the mutant lacking the N-terminal extension was predominantly cytosolic (Figure 5C). Furthermore, CLPP-1 recovered in mitoplasts was protected from protease digestion (Figure S3), consistent with localization to the mitochondrial matrix. Velocity gradient centrifugation showed that CLPP-1WT::TAG was present in a large complex consistent in size with a homo-oligomer of 14 subunits (Figure 5D), like its bacterial homolog (Sauer et al., 2004).

The observations above suggest that CLPP-1 might function upstream of DVE-1 and UBL-5.

First, we assessed the effect of clpp-1 inactivation on the localization of DVE-1::GFP in stressed animals. RNAi of clpp-1 inhibited the redistribution of DVE-1::GFP to nuclear puncta in zc32 mutant animals at the nonpermissive temperature (Figure 6A), without affecting the quantity of DVE-1::GFP protein in the animals (Figure 6D). Consistent with these observations, clpp-1(RNAi) also prevented DVE-1 from binding to the hsp-60 promoter in mitochondrially stressed animals. By contrast, ubl-5(RNAi), which also inhibits the UPRmt, had no consistent effect on puncta formation or promoter binding (Figures 6A and 6B).

Next, we assessed the effect of clpp-1(RNAi) on the induction of ubl-5 by mitochondrial misfolded protein stress. Inactivation of spg-7 markedly increased reporter activity of ubl-5::gfp transgenic worms, as predicted (Benedetti et al., 2006). Coincident clpp-1(RNAi) attenuated the induction of ubl-5::gfp by spg-7(RNAi) (Figure 6C) and resulted in lower levels of tagged UBL-5 in ubl-5::TAGUBL-5 transgenic animals (Figure 6D). As expected, the clpp-1(RNAi)-attenuated expression of ubl-5 resulted in lower levels of TAGUBL-5+DVE-1::GFP complex formation (Figure 6D). These observations place clpp-1 upstream of ubl-5 induction and DVE-1 relocalization in mitochondrially stressed animals. We further noted that whereas dve-1(RNAi) reproducibly attenuated ubl-5 activation, ubl-5(RNAi) had no similar inhibitory effect (Figure 6C). The implications of these findings for the epistatic relationship of the three genes will be discussed below.

In our experimental system, activation of mitochondrial chaperone genes required sustained perturbation of mitochondrial protein-folding homeostasis over the 3 days of worm development; manipulation of the fully developed adult animal had at most a very minor effect on hsp-60::gfp expression (data not shown). However, we noted that shifting fully developed adult ubl-5::gfp transgenic animals to elevated temperature led to induction of the reporter gene within 3 hr (Figure 7A). This induction was unaffected by hsf-1(RNAi), which potently inhibits the UPRT57 reporter hsp-1::gfp (Figure 54), but was strongly attenuated by clpp-1(RNAi) and to a lesser extent by dve-1(RNAi) (Figure 7A).

Developmental Cell

CLPP-1 and a Mitochondrial UPR

ª2007 Elsevier Inc. 471

Developmental Cell
The above observations suggested a role for *clpp-1* in signaling the consequences of a rapidly developing mitochondrial perturbation (by elevated temperature) to the nucleus. The relatively short latency of this *clpp-1*-dependent response suggested a way to distinguish between a developmental role for *clpp-1* in establishing conditions for the signaling pathway to exist and a more direct role for CLPP-1-mediated proteolysis in signaling itself. We confirmed that the *E. coli* ClpP inhibitor Z-LY-CMK (Szyk and Maurizi, 2006) and the peptide aldehyde MG132 (a known proteasome inhibitor) attenuate hydrolysis of a reporter substrate, SUC-LLVY-AMC, by CLPP-1WT;TAG purified from worms (Figure 7B). Injection of either inhibitor into young adult *ubl-5pr:gfp* transgenic worms attenuated reporter gene expression in response to elevated temperature: At 30°C, the average *ubl-5pr:gfp* signal of Z-LY-CMK-injected animals was 2 ± 1.24, 2.75 ± 1.035 in MG132-injected animals and 5.0 ± 0 in animals injected with the carrier DMSO solvent (mean ± SD, using a semiquantitative visual scale for intestinal GFP fluorescence; see Experimental Procedures) (Figure 7C). Proteasomal inhibition is unlikely to account for this effect, as pas-6(RNAi), which encodes a subunit of the 20S proteasome, did not attenuate *ubl-5pr:gfp* induction at elevated temperature. Neither Z-LY-CMK nor MG132 injection blocked induction of *spg-7pr:gfp* by arsenite, controlling for the potential toxicity of short-term exposure to these protease inhibitors (Figure 7C, lower panels). While we cannot exclude the possibility that the inhibitors are exerting their effect on the UPRmt by inhibiting enzymes other than CLPP-1, these observations are consistent with a direct role for CLPP-1-mediated proteolysis in signaling from stressed mitochondria to the nucleus.

DISCUSSION

This paper reports on a genome-wide analysis of a signaling pathway linking perturbation of the protein-folding environment in the mitochondrial matrix to expression of nuclear encoded mitochondrial chaperone genes. We have chosen to study the UPRmt in *C. elegans* because of the ease with which the response can be elicited by genetic manipulation of the folding environment in the mitochondria (Yoneda et al., 2004). Stringent criteria were applied to eliminate genes whose inactivation suppressed the expression of mitochondrial chaperones indirectly. Consequently, the effort yielded four genes, three of which can be plausibly ordered in a pathway stretching from the mitochondrial matrix to the promoters of the UPRmt's targets in the nucleus.

An important finding concerns *dve-1*, whose inactivation interferes with UPRmt target gene expression. The encoded protein, which contains a predicted DNA-binding domain related to the homeobox, is nuclear and can be crosslinked to the promoters of UPRmt target genes in stressed *C. elegans*. Furthermore, the nuclear distribution of DVE-1 is altered by application of mitochondrial stress. These observations favor a simple model whereby DVE-1 binds and activates mitochondrial chaperone genes in stressed cells.

In stressed worms, a DVE-1::GFP fusion protein (expressed from the endogenous promoter) forms a complex with the small ubiquitin-like protein, UBL-5 (tagged and expressed from its endogenous promoter). UBL-5 is the product of another gene identified by this screen as both a transcriptional target of the UPRmt and as a gene required for development of the full response. As both proteins reside outside the mitochondria, formation of a complex between endogenous DVE-1 and UBL-5 (assuming it occurs) is likely to be important in a relatively downstream step of the UPRmt. Our data suggest that CLPP-1, the *C. elegans* homolog of the bacterial ClpP protease, functions upstream in the UPRmt, as clpp-1(RNAi) prevents both the redistribution of DVE-1 to nuclear puncta and the induction of *ubl-5*. An upstream role for CLPP-1 is consistent with its location in the mitochondrial matrix where, presumably, the stress signal originates. The proposed epistatic relationships between *clpp-1*, *dve-1*, and *ubl-5* are presented in cartoon form in Figure 7D.

The fourth gene identified by our screen encodes a *C. elegans* homolog of Rhee, a GTPase implicated in signaling via TOR, which is a kinase that integrates nutritional and stress cues in eukaryotes (Manning and Cantley, 2003). Inactivation of either this Rhee homolog or *C. elegans* TOR blocks *hsps-60pr:gfp* expression in stressed worms but does not interfere with *dve-1* or *ubl-5*. Rather, *rheb-1* inactivation promotes nuclear redistribution of DVE-1, induction of *ubl-5*, and complex formation with...
DVE-1 (data not shown). These observations are consistent with a model whereby rheb-1 and TOR mediate signaling that feeds back negatively on the pathway defined by clpp-1, dve-1, and ubl-5. It is interesting to note in this regard that inactivation of TOR by rapamycin has recently been shown to decrease hsp-60 transcript levels in cultured Drosophila cells (Guertin et al., 2006).

Both formation of a DVE-1/UBL-5 complex and nuclear redistribution of DVE-1 correlate with activation of the UPRmt. On the ubl-5 side, it seems that clpp-1-dependent transcriptional induction is important. This transcriptional induction is likely to be part of an amplification circuit that operates in the UPRmt, as it is attenuated by dve-1(RNAi) (Figures 6C and 7A). We do not know if DVE-1 is a direct activator of ubl-5 or if its effects are mediated indirectly (e.g., by facilitating mitochondrial biogenesis). DVE-1 redistributes to bright nuclear puncta in response to chronic and acute mitochondrial stress (Figures 3A and 6A and Figure S5). This process, which correlates with promoter binding, is clpp-1 dependent and ubl-5 independent, but its basis is otherwise not understood. The nuclear distribution of SATB2, a mammalian homolog of DVE-1, appears to be regulated by SUMO conjugation (Dobreva et al., 2003); however, we were unable to detect modified forms of DVE-1 by immunoblot of stressed or unstressed worm lysates.

In S. pombe, inactivation of the ubl-5 homolog, HUB1, leads to accumulation of unspliced pre-mRNAs (Wilkinson et al., 2004), and the lethal phenotype of hub1 deletion can be rescued by overexpressing Rpb10, a subunit of RNA polymerase (Yashiroda and Tanaka, 2004). We have not detected accumulation of unspliced mitochondrial chaperone pre-mRNAs in ubl-5(RNAi) worms, nor have we observed the pervasive splicing defects predicted by the studies in S. pombe (data not shown). Nonetheless, these observations suggest a conserved role for UBL-5 in some nuclear step of gene expression relevant to the UPRmt.

The most intriguing question posed by our findings concerns the role of CLPP-1 in the UPRmt. Bacterial ClpP is involved in the proteolysis of diverse substrates, including defective translation products of mRNA fragments, enzymes, and regulatory factors (Gottesman,
Therefore, CLPP-1 may contribute to the biogenesis of the UPRmt signaling apparatus. However, our observations are more consistent with a direct role for CLPP-1 proteolysis in the UPRmt, as an inhibitor of its proteolytic activity rapidly blocked signaling when applied to animals that had developed normally up to that point (Figure 7C).

In \textit{E. coli}, ClpP degrades RseA, a repressor of \(\sigma^E\), the transcription factor activating the extracytoplasmic stress response (Flynn et al., 2004), and in stressed gram-positive bacteria, ClpP degrades CtsR, a labile repressor of the heat-shock response (Kruger et al., 2001). It is possible, therefore, that the degradation of repressors of the
stress response by ClpP/CLPP-1 has been conserved from bacteria to mitochondria. In that case, the mitochondrial substrate(s) of CLPP-1 might no longer resemble their counterparts in the protomitochondrial symbiont (a bacterium), as the latter signal in a compartment topologically equivalent to the mitochondrial matrix whereas

Figure 6. clpp-1(RNAi) Interferes with DVE-1 and UBL-5 Activation in the UPR

(A) Fluorescent photomicrographs of zc32 dve-1pr::dve-1::gfp transgenic animals grown at the permissive (20°C) or restrictive temperature (25°C) fed vector(RNAi), clpp-1(RNAi), or ubl-5(RNAi). The inset at the upper left corner reports on the mean ± SEM number of intestinal cells with puncta per animal.

(B) Ethidium bromide-stained gel of PCR-amplified promoter regions of the hsp-60pr::gfp transgene and endogenous myo-2 (a negative control). The template for the PCR reaction is the input lysate (“Input”) or the material recovered by anti-DVE-1 immunoprecipitation (ChIP, DVE-1) from wild-type hsp-60pr::gfp transgenic animals and stressed zc32 mutant hsp-60pr::gfp transgenic animals exposed to vector (control) RNAi, clpp-1(RNAi) or ubl-5(RNAi).

(C) Fluorescent photomicrographs of adult ubl-5pr::gfp transgenic animals exposed to spg-7(RNAi) without (vector) or in combination with clpp-1(RNAi), dve-1(RNAi), or ubl-5(RNAi).

(D) DVE-1 immunoblots of proteins recovered in complex with tagged UBL-5 by Ni-NTA agarose chromatography from lysates of dve-1pr::dve-1::gfp; ubl-5pr::ubl-5 compound transgenic worms subjected to spg-7(RNAi) in combination with clpp-1(RNAi).
the transcriptional response to mitochondrial stress has been exported across two membranes to the cytosolic/nuclear compartment.

E. coli ClpP associates with two known AAA ATPases, ClpA and ClpX, which are involved in substrate recognition, unfolding, and degradation. C. elegans lacks a recognizable homolog of ClpA but has two ClpX homologs (D2030.2 and K07A3.3); interestingly, their inactivation (first separately and then simultaneously) had no effect on hsp-60::gfp or ubl-5::gfp induction (Figure S6; data not shown). In yeast mitochondria, the inner-membrane protein, Mdh1, transports peptides generated by matrix proteases into the cytoplasm (Young et al., 2001). Animal cells have homologous proteins, though their role in peptide transport has yet to be demonstrated. In an alternative, highly speculative model, perturbed protein folding homeostasis in the mitochondria promotes Clpp-1-mediated generation of peptides that transport into the cytoplasm signals the UPR™. These observations suggest the existence of hitherto unrecognized CipP/CLPP-1 adaptors and substrates that function in the UPR™; their identification is now a high priority.

EXPERIMENTAL PROCEDURES

Transgenic and Mutant C. elegans Strains

Strains containing the UPR™ reporters hsp-60::gfp(zcs13) V and hsp-60::gfp(zcs19) V, the UPR™ reporter hsp-4::gfp(zcs10) V, the zcs11 II mutation that induces the UPR™, and the expression of cytosolic and mitochondrial GFP myo-3::gfp(zcs21) and myo-3::gfp(zcs14) have all been previously described (Yoneda et al., 2004; Benedetti et al., 2006).

The hsp-1::clpp-1::1WT::TAG(zcs21) V transgene was created by coinjecting plasmids myo-3::gfp and hsp-16::Clpp-1.TAG.V2 into N2 animals generating strain SJ4157. An inducible promoter was used to avoid potential toxicity of constitutive CLPP-1::1WT::TAG or CLPP-1::1KSS::TAG overexpression. The Myc3-His6 TAG was PCR amplified from pJF105 (a gift from Julia Flynn and Tania Baker) and ligated into pPD129.36, DVE-1 tagging at the C terminus. The entire clpp-1 coding sequence, leading to initiation at the second AUG codon, was PCR amplified from cDNA and ligated into pPD129.36, and the ubl-5::gfp consisting of the above promoter fragment driving GFP expression.

Screening and RNAi Procedures

Systematic inactivation of genes on C. elegans chromosomes II, III, IV, V, and X was conducted as previously described (Benedetti et al., 2006). In brief, four L4 larvae of the zcs12 II, hsp-60::gfp(zcs19) V genotype were placed on plates seeded with E. coli expressing double-stranded RNA of a specific gene (Kamath et al., 2003). Their progeny were allowed to develop for 36 hr at the permissive temperature (20°C) and then shifted to the nonpermissive temperature (25°C) and observed 48–72 hr later. At this point, the plate was populated with F1 progeny presenting a spectrum of levels of gene knockdown.

The inserts of the RNAi clones that passed our selection criteria were sequenced, and the RNAi phenotype of the clone from the genomic library was confirmed by constructing cDNA-based RNAi feeding plasmids: CLPP-1.cDNA.RNAi was created by inserting a fragment corresponding to nucleotides 133–621 of the cDNA into pSPD129.36. DVE-1.3UTR.RNAi was created by inserting the 522-nucleotide fragment 56 nucleotides downstream of the stop codon in the dve-1 cDNA into pPD129.36, and the ubl-5 cDNA feeding plasmids were previously described (Benedetti et al., 2006).

Immunostaining, Microscopy, and Image Analysis

Treatment of worms with ethidium bromide and tunicamycin was described previously (Yoneda et al., 2004). MitoTracker Red CMXROS (Molecular Probes) staining was performed by placing animals on plates containing 2 μg/ml and grown for at least 24 hr. For immunostaining, animals were grown on the appropriate RNAi plate, washed off, and bleached to isolate embryos. The embryos were then fixed, freeze cracked, and immunostained as described (Fukushima et al., 2006). Avidin®FITC (Jackson Laboratories) staining was performed by incubating embryos in a 1:200 dilution for 1 hr at 4°C.

Antibodies, Immunoprecipitation, Immunoblots, and Ligand Blot

Polyclonal serum was raised in rabbit by immunization with a fragment of DVE-1 (26–468), expressed as a His₆-tagged fusion protein in E. coli. Crude serum was used in immunoblots at a dilution of 1:8000. To immunostain embryos, the serum was cleared of reactivity to common bacterial antigens by passage through an affinity column made of soluble E. coli proteins coupled to sepharose.

Compound transgenic worms were homogenized in 50 mM NaH₂PO₄, 300 mM NaCl, 1% Triton X-100, and 10 mM imidazole (pH 8.0), and proteins were purified by Ni-NTA affinity chromatography and detected by immunoblotting with antisera to GFP, Myc (9E10), or DVE-1. An endogenous ER protein reactive with a monoclonal antibody to the peptide NH₂-HDEL-COOH (“HDEL”) and endogenous biotinylated mitochondrial proteins were detected with HRP-conjugated avidin by ligand blot, as described (Benedetti et al., 2006).

ChIP Experiments and Quantitative PCR

Chromatin immunoprecipitation from formaldehyde-fixed worm lysates was performed following a published protocol (Oh et al., 2006). Animals were treated with bleach to synchronize the population and grown in liquid with the appropriate RNAi for 72 hr. Approximately 250 mg of worms was recovered by sucrose flotation, followed by fixation in 1% formaldehyde for 1 hr. The reaction was quenched by
Figure 7. Induction of UBL-5 Is Dependent on CLPP-1 Proteolytic Activity

(A) Fluorescent photomicrographs of young adult ubl-5pr::gfp transgenic animals raised at 16°C and incubated at 30°C for 6 hr to induce mitochondrial stress. Where indicated, the animals were subjected to clpp-1(RNAi), dve-1(RNAi), or hsf-1(RNAi).

(B) Digestion of the fluorogenic peptide suc-LLVY-AMC by immunopurified CLPP-1::TAG. Where indicated, the inhibitors Z-LY-CMK and MG132 were added prior to addition of suc-LLVY-AMC.

(C) Fluorescent photomicrographs of young adult ubl-5pr::gfp or aip-1pr::gfp transgenic animals raised at 16°C, microinjected with DMSO (control), Z-LY-CMK, or MG132 and incubated at 30°C for 6 hr to cause mitochondrial stress. Arsenic-inducible reporter aip-1pr::gfp animals (Stanhill et al., 2007).

Figure 7. Induction of UBL-5 Is Dependent on CLPP-1 Proteolytic Activity

A

vector(RNAi) vector(RNAi) clpp-1(RNAi) dve-1(RNAi) hsf-1(RNAi)

ubl-5pr::gfp

16°C 30°C 30°C 30°C 30°C

B

CLPP-1::TAG

Suc-LLVY-AMC Fluorescence

5 μM Z-LY-CMK

50 μM MG132

5 μM MG132

50 μM Z-LY-CMK

0 5 10 15 20 25 30

time (min)

N2

C

vector(RNAi) vector(RNAi) Z-LY-CMK MG132 pas-6(RNAi)

ubl-5pr::gfp

16°C 30°C 30°C 30°C 30°C

D

vector(RNAi) vector(RNAi) Z-LY-CMK MG132 pas-6(RNAi)

aip-1pr::gfp

16°C 30°C 30°C 30°C 30°C

D

Mitochondria

Stress

ClpP

Nucleus

ubl-5

DVE-1

hsp-60

CLPP-1 Inhibition In Vitro and Worm Injection of CLPP-1 Inhibitors

hcsp-60::clpp-1 (or as a control, hsp-60::GFP) transgenic animals were grown in liquid and incubated at 30°C for 6 hr to induce CLPP-1::GFP expression and allowed to recover to 20°C for 12 hr. Approximately 0.5 g of worms was purified by sucrose flotation and lysed, and CLPP-1::GFP was detected by quantitative PCR using the MyQ single-color realtime PCR detection system and IQ SYBR Green Supermix (Bio-Rad Laboratories) with the primer pairs cehsp-60.1S & cehsp-60.8AS, respectively.

Supplemental Data

Supplemental Data include six figures and three tables and can be found with this article online at http://www.developmentalcell.org/cgi/content/full/13/4/467/DC1.

ACKNOWLEDGMENTS

REFERENCES

Developmental Cell
CLPP-1 and a Mitochondrial UPR

